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CARBOCHANGE aims at quantifying the ocean’s role in the
uptake of human-produced carbon dioxide, and at investigating
how large this uptake rate has been in the past, how it is
changing at present, and how it will evolve in the future.
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Long-term mean of (a) simulated ocean carbon fluxes (in g Cm-2 yr-1) and (b)
simulated regional carbon fluxes (in Pg C yr-1) compared to inversion-based
estimates published in Mikaloff Fletcher et al. (2007). Black and grey bars indicate
model and inversion-based estimates, respectively
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Carbon dioxide in the surface ocean has to
pass through the bottleneck of oceanic mixing
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The responses of carbon dioxide (CO,) and other climate variables to an emission pulse of CO, into the atmosphere are 0

often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to
characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-
climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses
of different magnitudes injected under different conditions. The CO, response shows the known rapid decline in the first
few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO, concentration of
389 ppm, 25 + 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 + 12% and the land the
remainder (16 + 14%). The response in global mean surface air temperature is an increase by 0.20 £ 0.12 °C within the

(b) Vertical distribution of [C,\7] (wmol kg?) during the OVIDE 2004 cruise.
Potential temperature (2C; white lines) and the isopycnal o, = 32:10 (solid black
line) separating the upper and lower limbs of MOC are also shown.
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Response in surface air temperature (K)

first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and . . / ‘__E““E"EEEELE oI Nature Geosciences DOI: 10.1038/NGE01680

sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated [/ ptemas *LEE%HH f— L”ﬁ'éf#g"é ——
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response in CO, published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree
within 15% during the first 100 yr. The integrated CO, response, normalized by the pulse size, is lower for pre-industrial
conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in
temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size,
background concentration, and model lead to uncertainties, the most important and subjective choice to determine
AGWP of CO, and GWP is the time horizon.
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synthesis publications such as the Global Carbon
Budget 2011 and 2012, and the IPPC 5t Assessment
Report. CARBOCHANGE thus provides science-based
guardrails for political decisions on mitigation
actions in order to control and alleviate the impact of
carbon dioxide emissions and climate change.

Response to the 100Gt C pulse as perturbation in global mean surface air temperature (a), in
ocean heat content (b), and in steric sea level rise (c). Results are for a CO2 emission pulse of
100 GtC added to a current CO2 concentration of 389 ppm (PD100).We note that the signal-to-
noise ratio is small for the models that feature a dynamic atmosphere (HadGEM2-ES, MPI-ESM, ] | |
NCAR-CSM1.4, and LOVECLIM) and the plotted evolutions for these models represent both the 50— P
forced response and a contribution from the models’ internal (unforced) climate variability. A
Small abrupt changes in the multi-model mean and confidence range arise from a change in
the number of model simulations; different groups run their model over different periods,
pending on CPU availability.
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